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Abstract
We study the behaviour of several joint residence times of N independent
Brownian particles in a disc of radius R in two dimensions. We consider:
(i) the time TN(t) spent by all N particles simultaneously in the disc within the
time interval [0, t], (ii) the time T

(m)
N (t) which at least m out of N particles spend

together in the disc within the time interval [0, t], and (iii) the time T̃
(m)

N (t)

which exactly m out of N particles spend together in the disc within the time
interval [0, t]. We obtain very simple exact expressions for the expectations of
these three residence times in the limit t → ∞.

PACS numbers: 05.40.Fb, 02.50.−z

1. Introduction

One of the important and physically meaningful characteristics of individual Brownian particle
trajectories is the time T (t) spent in a finite domain S within some observation time t. This
time is referred to in the literature as the ‘occupation’ [1, 2] or the ‘residence time’ [3–7]. Note
that contrary to the first exit or the first passage times out of S, the residence time accounts
for multiple exits from, and entries into S. As a matter of fact, the first passage times can
be obtained, once the residence times are known [7]. The long time properties of T (t) are
essentially dependent on the dimension of the embedding space. In one and two dimensions
all moments of T (t) diverge with time, which mirrors the fact that here the Brownian motion is
‘compactly’ exploring the space [8]. In two dimensions, in particular, the long time behaviour
of T (t) obeys the Kallianpur–Robbins’ law [9], which states that the scaling variable T ′(t),
defined as T ′(t) = 4πDT (t)

S ln t
, where D stands for the particle’s diffusion coefficient and S is

the area of the domain, is asymptotically distributed according to the exponential law. In
contrast, in higher dimensions, these moments tend to finite limiting values when t → ∞.
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Unfortunately, explicit expressions in these transient cases are not always available. A
notable exception is the special case of a three-dimensional spherical domain, a case in
which explicit values of the moments of the limiting values of the occupation time have been
obtained [6].

Recently, motivated in part by the development of new experimental techniques, such
as, e.g., fluorescence correlation spectroscopy (FCS), which enables the registering of single
particle events in many particle systems (see for example [15]), there has been considerable
interest in the behaviour of related properties of a set of independently diffusing particles
(see [10] and references therein). For instance, the number of distinct sites visited in
n steps by N random walks on a lattice [11], the time spent together by the first j

out of a total N number of particles, before they escape from a given region [12–14]
or the order statistics for N diffusing particles in the trapping problem [10] have been
extensively analysed. It has been recognized that, despite the absence of any physical
interaction between the diffusing particles, in many instances a highly cooperative behaviour
emerges.

In this paper we study collective statistical properties of the mean residence time of N
independent Brownian particles in a finite domain S. We focus here on the behaviour in a
two-dimensional continuum and suppose that S is a disc of radius R centred at the origin. We
consider three kinds of occupation times:

• The time TN(t) spent by all N particles simultaneously in the domain S within the time
interval [0, t];

• The time T
(m)
N (t) which at least m out of N particles spend together in the domain S within

the time interval [0, t];

• The time T̃
(m)

N (t) which exactly m out of N particles spend together in the domain S within
the time interval [0, t].

We obtain here very simple expressions for the mean values of these times in the limit t → ∞.
We note that this type of functionals of random walks has not received much attention

up to now, except for two particular cases. The first one concerns the occupation time of
harmonically bounded Brownian particles in two dimensions [16]. In the second case the
problem of the occupancy of a single lattice site by a concentration of random walkers has
been analysed [17]. Note that in both cases one finds that the moments of the residence time
diverge as t → ∞.

The analysis of such functionals of Brownian trajectories might be of importance for
several physical processes. Consider for example N molecules diffusing on a surface, which
contains a receptor sensible to the presence of a given number of molecules, say m, with
m � N , i.e. we suppose that there is a kind of sensitivity threshold. Suppose next that
the activity of the receptor is proportional to the time during which it is active, that is to
the time when there are at least m molecules in the vicinity of the receptor. We finally
have a situation where the response of the receptor at time t is proportional to the time T

(m)
N

defined previously. Another application can be found in the FCS which is, as mentioned,
a single molecule microscopy method. In these experiments, a given region of space is
illuminated by a laser beam, and one observes the fluorescence signal of the molecules
going through that region. In order to observe a single molecule, it might be important to
limit events corresponding to the presence of more than one molecule inside the illuminated
region, by decreasing the extension of the beam [15]. The evaluation of the time spent when
there are at least two particles out of the total number of molecules inside the illuminated
region, that is precisely the quantity T

(2)
N , could give a quantitative measurement of these
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undesirable events, and thus could furnish an indication of the required extension of the
beam.

2. The model

Consider N independent Brownian particles diffusing on an infinite two-dimensional plane.
Let rj (t) denote the positions of these particles at time t, while Dj stand for the corresponding
diffusion coefficients, which are not necessarily equal to each other. We also assume that all
particles are initially at the origin, i.e. r(0)

j = 0.
Next, let us introduce three auxiliary indicator functions 1S(r), I (m)

S ({rj }) and Ĩ
(m)

S ({rj })
which have the following properties

1S(r) =
{

1 if |r| � R

0 otherwise
(1)

I
(m)
S ({rj }) =

{
1 if at least m of N particles are in S
0 otherwise

(2)

and

Ĩ
(m)
S ({rj }) =

{
1 if exactly m of N particles are in S
0 otherwise.

(3)

The occupation times TN(t), T
(m)
N (t) and T̃

(m)
N (t), defined in the introduction, can then be

formally written as

TN(t) =
∫ t

0
dt ′


 N∏

j=1

1S(rj (t
′))


 (4)

T
(m)
N (t) =

∫ t

0
dt ′ I (m)

S ({rj (t
′)}) (5)

and

T̃
(m)
N (t) =

∫ t

0
dt ′ Ĩ (m)

S ({rj (t
′)}). (6)

Using the Poincaré-type formulae [19], the two last equations can be cast into a more convenient
form:

T
(m)
N (t) =

∫ t

0
dt ′

N∑
k=m

(−1)(k−m)

(
k − 1
m − 1

) ∑
1�i1<···<ik�N


 k∏

j=1

1S(rij (t
′))


 (7)

T̃
(m)
N (t) =

∫ t

0
dt ′

N∑
k=m

(−1)(k−m)

(
k

m

) ∑
1�i1<···<ik�N


 k∏

j=1

1S(rij (t
′))


 (8)

where the sums extend over all ordered k-uplets in {1, . . . , N}, and N � m � 2. Equations (7)
and (8) show that T

(m)
N (t) and T̃

(m)
N (t) are both functionals of TN(t). Consequently, we

focus our analysis on the behaviour of 〈TN(t)〉. Results for
〈
T

(m)
N (t)

〉
and

〈
T̃

(m)
N (t)

〉
can

be straightforwardly obtained once 〈TN(t)〉 is known and will be presented here without
derivation.
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3. Results

The first moment of TN(t), i.e. the mean time spent in S by N particles simultaneously within
the time interval [0, t], is given by

µN(t) = 〈TN(t)〉 =
∫ t

0


 N∏

j=1

〈1S(rj (t
′))〉j


 dt ′. (9)

Turning to the limit t → ∞, and performing averaging over the realizations of Brownian
motions, we obtain

µN ≡ lim
t=∞ µN(t) =

∫ ∞

0
dt ′




N∏
j=1

[
1 − exp

(
− R2

4t ′Dj

)]
 . (10)

We take next the diffusion coefficient D1 of the first particle as the reference. Introducing
the corresponding time scale τ = R2/4D1, as well as the dimensionless parameters
λi = D1

Di
, i = 1, . . . , N , we find that µN obeys

µN = τ

∫ 1

0

∏N
j=1(1 − vλj )

v(ln v)2
dv. (11)

Next, expanding the product
∏N

j=1(1 − vλj ) in powers of v, we arrive, by performing
integrations by parts, at the following explicit expression:

µN = τ

N∑
k=1

(−1)k
∑

1�i1<i2<···<ik�N

(
λi1 + · · · + λik

)
ln

(
λi1 + · · · + λik

)
. (12)

which does not seem to be an a priori trivial result.
In the particular case when only two Brownian particles, N = 2, are present in the system,

equation (12) yields the following symmetric compact expression:

µ2 = R2

4

[
1

D1
ln

(
1 +

D1

D2

)
+

1

D2
ln

(
1 +

D2

D1

)]
. (13)

When one of the particles moves much faster than the second one, that is, for instance, when
D1 � D2, equation (13) reduces to

µ2 ∼ R2

4D1
ln

(
D1

D2

)
. (14)

Note that such a result appears to be quite reasonable from the physical point of view. To a first
approximation, one estimates that the joint residence time is given by the joint residence time
before the first exit time of the slow particle out of the disc. This time is of order t2 = R2/D2.
Meanwhile, the fast particle leaves the disc and returns back several times. The time spent
at each return of the fast particle inside the disc is of order τ = R2/D1, and the order of
magnitude of the number of returns at time t2 of the particle one inside the disc is given by
ln(t2/τ) (cf the Kallianpur–Robbins’ law mentioned in the introduction). As a consequence,
we expect that for D1 � D2 one has

µ2 ∼ τ ln

(
t2

τ

)
∼ R2

D1
ln

(
D1

D2

)
(15)

which reproduces the dependence of µ2 on the diffusion coefficients D1 and D2 given by
equation (14).
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Consider now the special case when all of the particles have the same diffusion coefficient
D1. Here, equation (12) becomes

µN = τ

N∑
k=1

(−1)kk

(
N

k

)
ln(k) (16)

which in the asymptotical limit N → ∞ behaves as

µN ∼ τ

ln(N)
(17)

displaying a very slow decay as a function of N.
As a matter of fact, this expression coincides exactly with the result of [20, 21] obtained

for the mean first exit time out of the disc by one of N particles. This is, of course, not
counterintuitive, since, after the departure of one particle, the probability that all N particles
are present altogether inside the disc goes to zero when N tends to infinity.

Note also that the result in equation (17) is completely different from its lattice counterpart,
e.g. from the result obtained for the mean joint occupation time of a single lattice site by N
independent random walks. Here, for example, for continuous time random walks (with jump
frequency ω) on a d-dimensional hypercubic lattice, one finds (see [17]):

µN =
∫ ∞

0

N∏
j=1

pj (0, t ′|0, 0) dt ′ =
∫ ∞

0
e−Nωt ′

[
I0

(
ωt ′

d

)]Nd

dt ′ (18)

where pj (0, t ′|0, 0) denotes the probability that the j walker, which starts its random walk
at the origin, returns to the origin at time t ′, and I0(z) is the modified Bessel function. The
large-N asymptotic behaviour of µN thus follows [18]:

µN = 1

Nω

(
1 +

1

Nd
+

3

4(Nd)2
+

3

2(Nd)3
+ · · ·

)
. (19)

In this case, µN decreases with the increase in the number of walkers N at a much faster rate
than in the continuum, equation (17). A similar result has already been reported in the context
of the behaviour of first passage times in finite systems [12].

We finally consider an important special case in which only one of the particles has the
diffusion coefficient D1, while the remaining N − 1 have the diffusion coefficient D2—a case
of an ‘impure’ particle among a set of N −1 ‘pure’ particles. In this special case equation (12)
becomes, explicitly

µN = R2

4

{
N − 1

D2

N−1∑
k=1

(−1)k ln

(
k

k + D2/D1

) (
N − 2
k − 1

)

+
1

D1

N−1∑
k=0

(−1)k−1 ln(k + D2/D1)

(
N − 1

k

)}
. (20)

We now turn to the behaviour of µ
(m)
N ≡ limt→∞

〈
T

(m)
N (t)

〉
. Assuming that all particles

have the same diffusion coefficient D1, we find, using equation (7), as well as the result
obtained previously for µN , equation (16), that

µ
(m)
N = τ

N∑
k=m

(−1)(k−m)

(
k − 1
m − 1

)(
N

k

) k∑
j=1

(−1)j j

(
k

j

)
ln(j). (21)

Changing the order of summations, we finally obtain the following result:

µ
(m)
N = τm

(
N

m

) m−1∑
k=0

(−1)m−k

(
m − 1

k

)
ln(N − k). (22)
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In particular, for m = 2 (which corresponds to the FCS example mentioned in the introduction),
the last equation yields

µ
(2)
N = τN(N − 1) ln

(
N

N − 1

)
(23)

where τ = R2/D1. The asymptotic limit N → ∞ with m finite in equation (22) leads to

µ
(m)
N ∼ N

m − 1
τ (24)

which is compatible, for m = 2, with the result in equation (23) when N → ∞.
Lastly, for µ̃

(m)
N ≡ limt→∞

〈
T̃

(m)
N (t)

〉
, i.e. the mean limiting time spent simultaneously by

exactly m out of N particles within S, we find, using equations (8) and (16) (or the relation
µ̃

(m)
N = µ

(m)
N − µ

(m+1)
N ),

µ̃
(m)
N = τ

(
N

m

) m∑
k=0

(−1)m−k(N − k)

(
m

k

)
ln(N − k). (25)

We note parenthetically that, curiously enough, µ̃
(m)
N appears to be a non-monotonic function

of m, as suggested by numerical analysis of equation (25). In the asymptotic limit N → ∞
with m finite, equation (25) yields

µ̃
(m)
N ∼ N

m(m − 1)
τ (26)

which is not an a priori trivial result.

4. Conclusions

To conclude, we have studied several types of joint residence times of a disc of radius R by N
independent Brownian particles: The time TN(t) spent by all N particles simultaneously in the
domain S within the time interval [0, t]; the time T

(m)
N (t) which at least m out of N particles

spend together in the domain S within the time interval [0, t]; and finally, the time T̃
(m)

N (t)

which exactly m out of N particles spend together in the domain S within the time interval
[0, t]. We have shown that in case when all the particles are initially located at the centre
of the disc, it is possible to obtain the mean values of such joint residence times exactly for
arbitrary values of the particle number N.
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